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CS 188: Artificial Intelligence

Spring 2010

Lecture 18: Bayes Nets V

3/30/2010

Pieter Abbeel – UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell, 

Andrew Moore

Announcements

� Midterms

� In glookup

� Assignments

� W5 due Thursday

� W6 going out Thursday

� Midterm course evaluations in your email soon
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Outline

� Bayes net refresher:

� Representation

� Inference

� Enumeration

� Variable elimination

� Approximate inference through sampling

� Value of information
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Bayes’ Net Semantics

� A set of nodes, one per variable X

� A directed, acyclic graph

� A conditional distribution for each node
� A collection of distributions over X, one for 

each combination of parents’ values

� CPT: conditional probability table
� Description of a noisy “causal” process

A
1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs

� For all joint distributions, we have (chain rule):

� Bayes’ nets implicitly encode joint distributions
� As a product of local conditional distributions

� To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

� This lets us reconstruct any entry of the full joint
� Not every BN can represent every joint distribution

� The topology enforces certain conditional independencies 5

Inference by Enumeration

� Given unlimited time, inference in BNs is easy

� Recipe:

� State the marginal probabilities you need

� Figure out ALL the atomic probabilities you need

� Calculate and combine them

� Building the full joint table takes time and 
space exponential in the number of 

variables
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General Variable Elimination
� Query:

� Start with initial factors:
� Local CPTs (but instantiated by evidence)

� While there are still hidden variables (not Q or evidence):
� Pick a hidden variable H

� Join all factors mentioning H

� Eliminate (sum out) H

� Join all remaining factors and normalize

� Complexity is exponential in the number of variables 
appearing in the factors---can depend on ordering but 
even best ordering is often impractical
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Approximate Inference

� Basic idea:
� Draw N samples from a sampling distribution S

� Compute an approximate posterior probability

� Show this converges to the true probability P

� Why sample?
� Learning: get samples from a distribution you don’t know

� Inference: getting a sample is faster than computing the right 
answer (e.g. with variable elimination)
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Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass
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+c 0.5

-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5

-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2

-r 0.8

+s +r +w 0.99

-w 0.01

-r +w 0.90

-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01

-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…

Prior Sampling

� This process generates samples with probability:

…i.e. the BN’s joint probability

� Let the number of samples of an event be

� Then

� I.e., the sampling procedure is consistent
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Example

� We’ll get a bunch of samples from the BN:

+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

� If we want to know P(W)

� We have counts <+w:4, -w:1>

� Normalize to get P(W) = <+w:0.8, -w:0.2>

� This will get closer to the true distribution with more samples

� Can estimate anything else, too

� What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?

� Fast: can use fewer samples if less time (what’s the drawback?)

Cloudy

Sprinkler Rain

WetGrass

C

S R

W
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Rejection Sampling

� Let’s say we want P(C)

� No point keeping all samples around

� Just tally counts of C as we go

� Let’s say we want P(C| +s)

� Same thing: tally C outcomes, but 
ignore (reject) samples which don’t 
have S=+s

� This is called rejection sampling

� It is also consistent for conditional 
probabilities (i.e., correct in the limit)

+c, -s, +r, +w

+c, +s, +r, +w
-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

Cloudy

Sprinkler Rain

WetGrass

C

S R

W
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Likelihood Weighting

� Problem with rejection sampling:
� If evidence is unlikely, you reject a lot of samples

� You don’t exploit your evidence as you sample

� Consider P(B|+a)

� Idea: fix evidence variables and sample the rest

� Problem: sample distribution not consistent!

� Solution: weight by probability of evidence given parents

Burglary Alarm

Burglary Alarm
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-b,  -a

-b,  -a
-b,  -a

-b,  -a

+b, +a

-b  +a

-b, +a
-b, +a

-b, +a

+b, +a

Likelihood Weighting
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+c 0.5

-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5

-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2

-r 0.8

+s +r +w 0.99

-w 0.01

-r +w 0.90

-w 0.10

-s +r +w 0.90

-w 0.10

-r +w 0.01

-w 0.99

Samples:

+c, +s, +r, +w

…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

Likelihood Weighting

� Sampling distribution if z sampled and e fixed evidence

� Now, samples have weights

� Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W
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Likelihood Weighting

� Likelihood weighting is good

� We have taken evidence into account as 

we generate the sample

� E.g. here, W’s value will get picked 

based on the evidence values of S, R

� More of our samples will reflect the state 
of the world suggested by the evidence

� Likelihood weighting doesn’t solve 
all our problems

� Evidence influences the choice of 

downstream variables, but not upstream 
ones (C isn’t more likely to get a value 

matching the evidence)

� We would like to consider evidence 
when we sample every variable 19

Cloudy

Rain

C

S R

W

Markov Chain Monte Carlo*

� Idea: instead of sampling from scratch, create samples 
that are each like the last one.

� Procedure: resample one variable at a time, conditioned 
on all the rest, but keep evidence fixed.  E.g., for P(b|c):

� Properties: Now samples are not independent (in fact 
they’re nearly identical), but sample averages are still 
consistent estimators!

� What’s the point: both upstream and downstream 
variables condition on evidence.
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+a +c+b +a +c-b -a +c-b

Decision Networks

� MEU: choose the action which 
maximizes the expected utility 
given the evidence

� Can directly operationalize this 
with decision networks
� Bayes nets with nodes for 

utility and actions

� Lets us calculate the expected 
utility for each action

� New node types:
� Chance nodes (just like BNs)
� Actions (rectangles, cannot 

have parents, act as observed 
evidence)

� Utility node (diamond, depends 
on action and chance nodes)

Weather

Forecast

Umbrella

U
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Decision Networks

� Action selection:
� Instantiate all 

evidence
� Set action node(s) 

each possible way
� Calculate posterior 

for all parents of 
utility node, given 
the evidence

� Calculate expected 
utility for each action

� Choose maximizing 
action

Weather

Forecast

Umbrella

U
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Example: Decision Networks

Weather

Umbrella

U

W P(W)

sun 0.7

rain 0.3

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

Umbrella = leave

Umbrella = take

Optimal decision = leave

Evidence in Decision Networks

� Find P(W|F=bad)

� Select for evidence

� First we join P(W) and 
P(bad|W)

� Then we normalize

Weather

Forecast

W P(W)

sun 0.7

rain 0.3

F P(F|rain)

good 0.1

bad 0.9

F P(F|sun)

good 0.8

bad 0.2

W P(W)

sun 0.7

rain 0.3

W P(F=bad|W)

sun 0.2

rain 0.9

W P(W,F=bad)

sun 0.14

rain 0.27

W P(W | F=bad)

sun 0.34

rain 0.66

Umbrella

U

Example: Decision Networks

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take
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